
Deep Q-Learning based approach applied to the Snake game

Deep Q-Learning based approach applied to the Snake game

Victor MAYAUD1, Elliot BOUCHY1

1 Data Science, EURECOM, France

Abstract
In recent years, the application of Deep Q-Learning (DQL) in classical games has gained significant attention in the field of artificial
intelligence. This paper presents a comprehensive approach to training an AI agent to play the Snake game using Deep Q-Learning.
By leveraging a neural network to approximate Q-value functions, the agent learns to make optimal decisions through interactions
with the game environment. The state of the game is represented by a detailed vector incorporating the positions of the snake and
food, and the actions are chosen based on a balance of exploration and exploitation, controlled by an epsilon parameter. We explore
various strategies for hyperparameter tuning and implement a stronger AI adjustment mechanism that considers future steps to
optimize decision-making policies. The experimental results demonstrate significant improvements in the agent’s performance over
training epochs, highlighting the effectiveness of our approach. This study underscores the potential of advanced reinforcement
learning techniques in developing intelligent agents for complex tasks.

1 Introduction
In the evolving landscape of artificial intelligence, the applica-
tion of Deep Q-Learning (DQL) to classical games offers a fertile
ground for exploring and demonstrating the capabilities of rein-
forcement learning. This study focuses on training an AI agent
to play the Snake game using DQL, aiming to develop an intelli-
gent agent that can learn optimal strategies through continuous
interaction with the game environment. By employing a neu-
ral network to approximate Q-value functions, the agent adapts
and improves its performance based on rewards and penalties
encountered during gameplay. In this project, we further en-
hanced the complexity of the task by incorporating random
blocks within the game environment, which challenged the AI
to navigate more dynamically changing conditions.

2 Snake Game
The Snake game is a timeless arcade classic where players guide
a growing snake to consume randomly appearing food items on
the screen, navigating through a confined space to avoid col-
liding with walls or the snake’s own lengthening body. As the
snake eats, it grows longer and gameplay becomes increasingly
challenging, requiring greater strategic planning, quick reflexes,
and spatial awareness. The game’s escalating difficulty with the
snake’s increasing speed and size, combined with its simple yet
engaging mechanics, has cemented its status as a universally
cherished game that tests players’ coordination and decision-
making skills.

3 Deep Q-learning model
3.1 First Approch

we opted for a simple initial approach to familiarize ourselves
with the model’s architecture and learning mechanisms. Here is
a detailed description of this approach, including the structure of
the neural network model and the training and reward methods
used.

Architecture:
The input layer is made up of 8 neurons. These neurons

represent the features of the environment that the Snake can
perceive. In our case, this includes information about the three
blocks ahead, the current direction, and possibly other environ-
mental indicators.

Hidden layers: There are two hidden layers in the network:

The first hidden layer has 16 neurons, followed by a ReLU
(Rectified Linear Unit) activation function to introduce non-
linearity.

The second hidden layer has 8 neurons, also followed by a
ReLU activation function.

Output: The output layer has 4 neurons, representing the
four possible actions the Snake can perform (up, down, left,
right).

Reward System
The reward system is essential to guideAI learning by provid-

ing feedback on its actions. In our approach, we have designed a
reward system based on different game scenarios, to encourage
desirable behaviors and discourage those that lead to failure.

Loss of Game (Collision): When the Snake collideswith awall
or rolls over, the game is over. In this case, a severe penalty of -
2.0 is applied. This severe penalty is designed to dissuade the AI
from taking actions that could lead to a collision, motivating it
to find strategies to avoid these situations and prolong the game.

Victory (Completely Filled Screen): If the Snake manages to
fill the entire screen with its body, this represents a victory. Al-
though this situation is rare, a positive reward of 1.0 is awarded.
This reward, thoughmodest, signals to the AI that it has reached
the game’s ultimate goal. It encourages the AI to pursue strate-
gies that maximize its growth until it fills the screen.

Eat an Apple: Each time the Snake eats an apple, a positive
reward of 1.0 is awarded. This reward is designed to encourage
the AI to actively seek out apples, which is crucial to its growth
and to prolonging the game. By eating apples, the Snake grows,
increasing the difficulty of the game, but also the reward oppor-
tunities.

Other cases: In all other situations where the Snake simply
continues to move without eating an apple or colliding, the re-
ward is neutral, i.e. 0.0. This neutrality means that the action
neither significantly contributed to nor detracted from the AI’s
performance. This allows the AI to understand that these move-
ments have no direct impact on its success or failure, and that it
should concentrate on more meaningful actions such as avoid-
ing obstacles and eating apples.

Environment design
Environment design The game environment was configured

so that Snake could only perceive the three blocks directly next
to him: one block straight ahead, one to the left, one to the right.
This information was encoded as input for the neural network,



enabling the AI to make decisions based solely on this restricted
vision.

Figure 1. Snake-vision

Limits and problems encountered
However, this approach soon revealed its limitations. One of

the major problems we observed was that the Snake tended to
wrap around itself, resulting in frequent failures. Here are some
details on the causes and consequences of this behavior:

Restricted vision: With its perception limited to the three
blocks in front of it, the AI couldn’t anticipate longer-term
movements. It often made optimal short-term decisions with-
out considering the Snake’s future position, leading to situations
where it wound itself up.

Lack of Planning: Limited vision prevented the AI from ef-
fectively planning its movements to avoid getting stuck. As a
result, the Snake often ended up in a position where it no longer
had safe movement options, resulting in defeat.

Ineffective training: The Deep Q-Learning model, despite nu-
merous iterations of training, was unable to reliably learn to
avoid this problem. Experiments showed that the Snake could
survive longer by chance, but eventually failed systematically
by winding up.

Figure 2. Snake-problem

3.2 Second Approch

Our second approach focuses on the Snake’s ability to perceive
the whole game map, enabling it to make more informed and
strategic decisions.

Enhanced Neural Network
For this second approach, we modified the neural network

so that it could process information from the entire game map.
Instead of receiving input limited only to the immediate blocks
in front of the Snake, the new model takes as input a complete
representation of the state of the game, i.e. the entire layout of
blocks, apples and walls. This approach gives the AI a complete
view of its environment, enabling it to anticipate future moves
and avoid potential pitfalls.

New Reward Function

In addition to modifying the Snake’s perception, we’ve also
enhanced our reward function to incorporate a more sophisti-
cated update model. The new reward function is defined by the
following formula:

𝑅 = 𝑟 + 𝛾 ·max(𝑅(𝑠′))
This formula takes into account not only the immediate re-

ward, but also potential future rewards, weighted by the dis-
count factor. Using this approach, AI learns to evaluate its ac-
tions not only in terms of immediate gains but also by antici-
pating future gains, encouraging more strategic and sustainable
behavior.

4 Learning
The learning phase involves training an AI agent to play the
Snake game using Deep Q-Learning. The objective is to opti-
mize the agent’s decision-making policy by adjusting the neural
network’s weights based on the rewards received during game-
play. The process of learning is carried out through a combina-
tion of state representation, action selection, reward calculation,
and network updates.

4.1 Reward
The reward function is critical in guiding the agent’s learning
process. In the context of the Snake game, the reward is calcu-
lated based on the outcome of the game and the agent’s actions.
The get_reward function determines the reward as follows:

• If the game is over and the snake has not occupied all grid
cells, the agent receives a penalty of -2.0.

• If the game is over and the snake has occupied all grid cells,
the agent receives a reward of 1.0.

• If the snake eats the food, the agent receives a reward of
1.0.

• In all other cases, the reward is 0.0.
This reward structure encourages the agent to maximize its

length by eating food while avoiding collisions with the walls
or its own body.

4.2 Exploration
Exploration is the process by which the agent tries out new ac-
tions to discover their effects, which helps it learn more about
the environment. In the code, exploration is managed through
an epsilon-greedy strategy, where the agent occasionally selects
random actions. This randomness is controlled by the epsilon
parameter, which determines the probability of choosing a ran-
dom action over the one predicted by the neural network. Ex-
ploration ensures that the agent does not get stuck in suboptimal
strategies and has the opportunity to discover potentially better
actions.

To enhance the efficiency of the exploration phase, the learn-
ing rate for selecting random actions is gradually decreased. Ini-
tially set to favor high randomness, the learning rate allows the
agent to explore a wide range of actions, avoiding early con-
vergence on suboptimal policies. As learning progresses, this
rate is systematically reduced, transitioning the agent from a
learning phase dominated by exploration to a more autonomous
phase where actions are chosen based on accumulated knowl-
edge rather than random selection.

4.3 Exploitation
Exploitation refers to the agent using its current knowledge to
choose the action that maximizes the expected reward. This is

2



also managed by the epsilon-greedy strategy, where the agent
selects the action with the highest predicted Q-value most of
the time. As the agent learns and improves its policy, the ep-
silon parameter can be gradually reduced to favor exploitation
over exploration, ensuring that the agent uses the best-known
strategies more frequently.

By balancing exploration and exploitation, and by carefully
managing the transition from high to low learning rates for ran-
dom actions, the agent can effectively learn and improve its per-
formance in the Snake game. This approach helps the agent to
continually adapt, maximizing its rewards over time while be-
coming increasingly autonomous.

5 Result
The graphs below show the results obtained when training our
agent with Deep Q-Learning for the Snake game.

The graph on the left shows the loss over time. Here’s what
we can deduce:

Loss decreases overall as training progresses, from around
1.4 to around 0.4. This indicates that the model is getting better
at predicting optimal actions over time. Although the general
trend is downwards, there are noticeable fluctuations in losses
at each epoch. These fluctuations may be due to the AI’s con-
tinuous exploration of new strategies, or to variations in game
configurations.

Towards the end of training (after around 70 epochs), the loss
seems to stabilize at around 0.4, suggesting that the model has
reached a certain level of competence and can no longer learn
from touching.

At the start of training, the snake’s size remains relatively
stable at around 4.0, indicating that the agent is not signifi-
cantly improving its ability to consume apples and avoid en-
tanglements.

From around 30 epochs onwards, there is a gradual increase
in snake size. This shows that the AI is beginning to better un-
derstand how to navigate the game efficiently.

Towards the latter eras, there is an increase in snake size,
reaching sizes of over 6.5. This indicates that the AI is no longer
able to learn and is getting stuck.

Figure 3. loss and snake’s size over epoch with the best model

Figure 4. loss and snake’s size over epoch with the best model

The graph on the left shows the evolution of losses over the
different training periods. There is a general decrease in losses

over time, indicating that the model is learning to optimize its
decisions. However, variations persist, with occasional peaks,
particularly around epoch 60, which could be attributed to the
agent’s exploration of new strategies.

The graph on the right shows the evolution of the snake’s
size over the eras. There is a gradual increase in the snake’s
size, particularly after epoch 50. This positive trend shows that
the agent is improving its ability to survive longer and eat more
apples, which translates into increased growth.

The results confirm the effectiveness of our Deep Q-Learning
approach for training an agent to play the Snake game. The re-
duction in losses and the increase in the size of the snake over
time testify to the significant progress made by the agent in op-
timizing its strategies.

6 Position with respect to the existing work
6.1 Classic Q-Learning and DQL approaches
Work by Zhepei Wei et al (2018) and Alessandro Sebastianelli et
al (2021) applied Q-Learning and Deep Q-Learning (DQL) to de-
velop autonomous agents playing Snake. These studies showed
that agents can learn to avoid collisions and maximize their
score by using neural networks to approximate Q.

Traditional approaches have often encountered problems of
long-term planning and restricted vision, leading to sub-optimal
performance. For example, in previous studies, agents had a vi-
sion limited to their immediate environment, which prevented
them from effectively planning their future movements.

6.2 Innovations and improvements to our approach
Unlike previous approaches, our second approach enables the
agent to perceive the entire game map. This global vision of
the environment enables the agent to anticipate its future move-
ments and avoid potential pitfalls, which significantly improves
its performance.

We have introduced a more sophisticated reward function
that incorporates a model for discounting future rewards. Using
the formula

𝑅 = 𝑟 + 𝛾 ·max(𝑅(𝑠′))
our agent learns not only to evaluate immediate gains but also
to anticipate future gains, thus fostering more strategic and sus-
tainable behavior.

We explored various hyperparameter adjustment strategies
and implemented a more robust adjustment mechanism to op-
timize the agent’s decision policies. This includes dynamic ad-
justment of exploration and exploitation parameters to ensure
that the agent does not settle on sub-optimal strategies, but con-
tinues to discover potentially better actions.

6.3 Comparison of results
The experimental results show significant improvements on
previous work. Our graphs show a progressive reduction in
losses and a steady increase in snake size, illustrating that our
agent is able to learn and apply more effective strategies over
time.

7 Conclusion
In this project, we successfully implemented a Deep Q-Learning
based approach to training an intelligent agent for the classic
Snake game. By progressively adjusting the agent’s learning pa-
rameters, we facilitated a smooth transition from a highly explo-
rative phase to a more autonomous phase of gameplay. Initially,
the agent was allowed to explore extensively, making random

3



moves to gain diverse experiences from the environment. Over
time, as the agent’s understanding of the game deepened, we
decreased the randomness, thus shifting the focus towards ex-
ploiting the learned strategies to maximize performance.

This adaptive strategy not only optimized the agent’s learn-
ing process but also highlighted the practical applications of re-
inforcement learning in creating intelligent systems capable of
adapting to and excelling in dynamic environments. The grad-
ual reduction of the learning rate for random actions ensured
that the agent did not settle prematurely on suboptimal strate-
gies and continued to improve its decision-making capabilities
over time. As evidenced by the increasing length of the snake
and decreasing game losses, our approach proved effective in
enhancing the agent’s ability to navigate the complexities of the
game successfully.

References
[1] Zhepei Wei, Di Wang, Ming Zhang, Ah-Hwee Tan, Chun-

yanMiao, and You Zhou.Autonomous Agents in Snake Game
via Deep Reinforcement Learning. In 2018 IEEE International
Conference on Internet of Things and Intelligence System
(IoTaIS), page 1596. IEEE, 2018.

[2] Alessandro Sebastianelli, Massimo Tipaldi, Silvia Liberata
Ullo, and Luigi Glielmo. A Deep Q-Learning based approach
applied to the Snake game. In 2021 29th Mediterranean Con-
ference on Control and Automation (MED), page 776. IEEE,
2021.

4


	Introduction
	Snake Game
	Deep Q-learning model
	First Approch 
	Second Approch

	Learning
	Reward
	Exploration
	Exploitation

	Result
	 Position with respect to the existing work
	Classic Q-Learning and DQL approaches
	Innovations and improvements to our approach
	Comparison of results

	Conclusion

