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   Project 2: The Perceptron   

Part1     :  
The initial task was to implement a perceptron. In perceptron.py, we created two Perceptron classes.

One class utilizes the log loss function as the cost function with the sigmoid as the activation function, while
the  second employs the  mean square  error  function,  again with the  sigmoid as  the  activation  function.
Although the two classes use different cost functions, they share the same structural design, each with its
respective gradient formula. The class constructor accepts several inputs, including the dataset, learning rate,
momentum, and the selected optimization method for training. The perceptron's parameters are initialized
within the constructor, with weights set using the He initialization method to promote better convergence.
The train method facilitates the updating of weights and biases using different approaches:

The classic method applies gradient descent, where updates are informed by the gradient computed from
either the log loss or the mean square error function. We dynamically adjust the learning rate during training
to encourage better convergence.

The momentum method enhances gradient descent by accounting for both the current gradient and a portion
of the previous update vector.  It  calculates gradients for weights and biases,  updates their  velocities by
amalgamating past velocities (scaled by the momentum coefficient) with current gradients (scaled by the
learning rate), and then modifies the weights and biases by subtracting these velocities. This approach is
designed to accelerate gradient descent, steering it along pertinent directions while diminishing oscillations
within the cost function's landscape.

The predict  function calculates the output  of  the sigmoid function for each data point.  To ascertain the
model's classification, we assess whether the output is below or above 0.5. Outputs under 0.5 are categorized
as 0, and those over 0.5 are classified as 1.

Part2 :
After  implementing  both  perceptrons,  the  subsequent  step  was  to  conduct  tests.  We  began  by

importing only the digits 1 and 0 from the sklearn.datasets library and divided the dataset into two segments:
two-thirds for training and one-third for testing. This division was essential for assessing the perceptron's
efficacy on data it had not previously encountered.

We then initiated training with our first perceptron (utilizing the log loss function and sigmoid activation) on
the training dataset. To pinpoint the optimal hyperparameters—namely, the learning rate and the momentum
coefficient—we calculated  the  average  accuracy  across  20  iterations.  This  exercise  was  replicated  with
varying values for the coefficients to obtain a more stable result. The best performance was recorded with a
learning rate of 1 and a momentum coefficient of 0.7 (refer to Figure A-1). At these settings, the perceptron
swiftly attained a 100% accuracy rate on the test set. Although the traditional gradient descent method was
efficient, the momentum method proved superior, frequently delivering outstanding results on the test set
after merely 2 or 3 training epochs. Figure  A-2 demonstrates the momentum method's capacity to reach
favorable outcomes more expeditiously than the classical approach.

A similar procedure was employed for the second perceptron (mean square error with sigmoid activation).
We conducted a parameter search, determining the most effective values to be 10 for the learning rate and 0.5
for the momentum. Upon training our model with these parameters, although the learning speed was slower
compared to the first perceptron (A-3), it still yielded satisfactory results.

Part3 :
The exercises  outlined  are  integral  for  understanding  the  mathematical  mechanics  of  machine  learning.
Calculating derivatives sharpens our insights into how models learn and adjust  from data.  Grasping the
sigmoid  function's  intricacies,  for  instance,  is  key  for  neural  network  training.  Exercises  on  Taylor
polynomials and Jacobians enhance our grasp of model behavior and sensitivity, which are crucial for model
optimization. The use of the chain rule in derivative computation reflects the complexity of training deep



learning models, equipping us with the necessary skills to tackle real-world machine learning challenges
efficiently.

Conclusion:
This laboratory exercise enabled us to construct and execute a perceptron on a dataset, significantly

enhancing our understanding of perceptrons as well as gradient and vector calculus. The perceptron utilizing
a log loss function paired with sigmoid activation demonstrated high efficiency for binary classification
tasks, and it appeared to outperform the alternative perceptron that employed mean square error with sigmoid
activation. The provided dataset was relatively straightforward for the perceptron to differentiate between
two classes,  which accounts  for  the  high accuracies  achieved by  both perceptrons  at  the  conclusion  of
training.



Annexe :

A-1:

A-2: Comparison between momentum method and classic gradient descent method on perceptron



A-3: Accuracy of the Perceptron Using Momentum Method and MSE Cost Function Across Iterations


