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Understanding k-Nns

Part I – Implementing a kNN from scratch:

First  I  created  a  k-Nearest  Neighbors  (kNN)  algorithm  prototype,  initially  coding  the
necessary  functions  to  handle  initialization,  train,  distance  calculation,  and  prediction.  In  the
training  section  I  store  the  training  data  X and labels  Y.  Following  this,  then  I  optimized the
prototype  to  improve  performance.  By using  the  scipy.spatial.distance  library,  I  made  distance
calculations more efficient. Furthermore, I changed the prediction method using the argsort function
for  faster  identification  of  the  nearest  neighbors  and streamlined  label  determination  for  more
effective classification. The execution times recorded for the KNN algorithms were 6.28 seconds
for  the  initial,  0.078  seconds  for  the  optimized,  and  0.028  seconds  for  the  Scikit-learn
implementation,  revealing that  the Scikit-learn version is  substantially  faster,  outperforming the
optimized algorithm by a factor of 3.5.(A-1)

Task 2:

After developing the kNN algorithm, I focused on optimizing the number of neighbors (k). For this,
I used cross-validation to avoid overfitting and to ensure that the model generalizes well to new
data. In cross-validation, the data is divided into a training set and a validation set. The training set
is further partitioned into 'k' equal segments or folds. Each fold takes turns serving as the validation
set with the remaining ones used for training. The model is trained and validated 'k' times, with each
fold being used exactly once for validation, and performance metrics are recorded. The average
performance across all folds is calculated, and the k value with the highest average performance is
selected as the optimal number of neighbors for the kNN model (A-2). This method is advantageous
because it uses data efficiently and provides a reliable performance estimate for unseen data (we
avoid over fitting.). Using k=39, identified through cross-validation on the training set with 5 folds,
resulted in an 81.46% accuracy on the validation dataset. The accuracy is the same when using the
optimized algorithm and the Scikit-learn algorithm. The selection of k=39, although not optimal for
this  dataset,  is expected since it aims to avoid overfitting and ensure generalizability. Choosing
k=27 might improve results on this dataset but risks overfitting, potentially reducing performance
on new data (A-3). In using utils.py we can display the frontier of the both classes with a trained
dataset (A-4).

Part II – The curse of dimensionality:

As presented in the book the curse of dimensionality is a recurrent problem in machine learning. Let
us first briefly present what it is before making it in correlation with KNNs thanks to the exercises. 

As explained in the book the curse of dimensionality has different manifestations. For example, for
a p-dimensional unit ball sampling a small fraction of its volume demand to use a hypersphere
neighborhood with a high radius. In the KNN method, we give to the algorithm a set of data and we
attribute  to  them values.  The  algorithm  will  take  the  K  (chosen  wisely)  nearest  neighbors  to



determine the class of a new data. For example, if a majority of the nearest neighbors belong to
Class 1 the new data will be put in Class 1. 

The 2.4 exercise shows a manifestation of the curse of dimensionality since the equality we prove
shows that for a high value of p, the median distance from the origin to the closest data point goes
higher. So the data points are mainly spread on the surface of the p-dimensional sphere and so it
will be harder for the KNN algorithm to “reach” these points. In the 2.5 exercise, we show that the
zi,  which are the projections of the data  in the training set,  are  distributed uniformly around a
prediction  point  x0.  So it  makes  it  difficult  for  the  KNN algorithm to  choose  the  appropriate
neighborhood.  
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