
Victor
MAYAUD

Lab 3 : APPIOT
Advance Message Queuing Protocol (AMQP) and

Extensible Messaging and Presence Protocol (XMPP)

AMQP :

After launching proton_receiver.py I obtained this from wireshark :

• Protocol-Header 1-0-0: This is the initial handshake packet in an AMQP connection,
indicating the start of a new AMQP protocol communication. It's sent to negotiate the
protocol version to be used between the client and server.

• sasl.mechanisms: This packet lists the authentication mechanisms that the server supports, as
part of the SASL (Simple Authentication and Security Layer) negotiation process.

• sasl.init: This is the client's response to the sasl.mechanisms packet, initiating the
authentication process by selecting a mechanism and possibly providing initial
authentication data.

• sasl.outcome: This packet indicates the outcome of the SASL authentication process initiated
by the sasl.init message. It tells the client whether the authentication was successful or not.

• Protocol-Header 1-0-0: These are additional AMQP protocol header packets that might
indicate a re-negotiation of the protocol or a reinitialization of the connection attempt.

• open: This packet signifies the actual opening of an AMQP connection after successful
SASL negotiation, indicating that both the client and the server are ready to start the session.

• begin: This packet marks the start of an AMQP session within the established connection,
setting up a context in which messaging can occur.

• attach: This packet represents the client's request to attach a link to the session, which is
necessary for creating a channel for message transfer.

• flow: This packet is related to flow control within the AMQP session, indicating how many
messages the receiver is ready to accept or how many messages the sender is willing to send.

In the captured flow packet, we see the link credit set at 10, indicating that the sender is permitted to
send ten messages before awaiting further acknowledgments or flow control updates from the
receiver. This mechanism efficiently prevents the receiver from becoming overwhelmed with
messages. Additionally, the window size is specified as 65535, which is the count of frames the
receiver is prepared to process before sending back pressure signals or acknowledgements. These
controls are pivotal in maintaining a stable message flow, ensuring neither sender nor receiver
exceeds their processing capacity and preserves the integrity of the message queue.

In the open packet, the maximum frame size is set to 32767, delineating the largest permissible size
for a single frame in the session, ensuring compatibility and efficient processing between
communicating peers.

In the packet sasl.mechanisms, we observe a SASL packet detailing the authentication mechanisms
available for securing the AMQP communication. The sasl.mechanisms listed include
ANONYMOUS, PLAIN, and AMQPLAIN, indicating different levels of authentication offered by
the server. The presence of these mechanisms is the first step in ensuring secured communication,
with the understanding that mechanisms like PLAIN should be used over a secured layer like TLS
to encrypt credentials in transit. This packet is pivotal in demonstrating the initiation of secure
communication within the AMQP protocol.

Running the proton_sender.py script initiated a sequence of AMQP operations captured in
Wireshark, which are key to the AMQP messaging process. The transfer performative observed in
the captures is fundamental for the delivery of messages from the sender to the receiver. It includes
the frame header and message header, which are essential for routing and delivering the message
correctly. The transfer performative appearing twice indicates that both the sending of the message
and the subsequent acknowledgment or disposition are being captured. This process underlines the
Quality of Service at the protocol level, ensuring message integrity and reliable delivery.

The disposition packet captured in Wireshark confirms that messages have been processed by the
receiver with the Settled field set to True. This indicates a Quality of Service level of "At least
once," ensuring that each message is acknowledged after processing, with no further action required
for these messages.

In order to send more message I put self.total equals to 20 and I obtained this with wireshark:

After increasing the number of messages sent by the proton_sender.py script, we can see several
transfer frames indicating message transmissions and disposition frames indicating message
acknowledgments.

Initially, the server transfers ten messages, as evidenced by the ten consecutive transfer packets
observed in the capture. This number corresponds to the link credit of 10 specified in a preceding
flow packet, which dictates the sender can dispatch ten messages before requiring additional credit.
Following the initial burst, the sender pauses, awaiting replenishment of link credit from the
receiver, as indicated in a subsequent flow packet where the link credit has decreased to 9. The
sender resumes transmissions, sending the next nine messages, then halts again, dispatching the
final message once the link credit is restored. Eventually, after a certain time interval, the link credit

is reset to its initial count of 10, signaling the sender to proceed with the message flow. This cycle
effectively demonstrates the AMQP's flow control mechanism, ensuring balanced message delivery
without overloading the receiver.

XMPP :

The first step is to update the code echo_bot.py and sender.py

echo_bot.py:

In the revised version of the EchoBot, significant improvements have been implemented to enhance
its performance and scalability in handling multiple user sessions concurrently. By integrating
asyncio, the bot now operates on an asynchronous event loop, allowing it to manage different user
interactions more efficiently and without blocking. The addition of threading enables separate
instances for each user, such as Alice and Bob, to run simultaneously, thus maintaining session
independence while sharing the same execution environment. The message handling mechanism
has also been refined to only respond to messages that contain actual text, preventing the bot from
sending replies to empty or irrelevant messages. Furthermore, the bot now supports additional
XMPP protocols through the implementation of the xep_0092 plugin for software versioning,
enhancing its interoperability and adherence to standard communication protocols. These
enhancements not only make the bot more robust and practical for real-world applications but also
improve its capability to be scaled for larger deployments.

Sender.py:

in order to send a message between the both account I used this command:

python sender.py -j alice@networkedss-virtualbox -p alice -t bob@networkedss-virtualbox -m
"Hello"

wireshark:

The network packet trace indicates an XMPP session where an initial STREAM is established
between the client and the server, designated by local IP addresses. This is followed by a two-step
authentication process: a CHALLENGE is issued by the server, to which the client responds with an
AUTH message containing the credentials. The server replies with another CHALLENGE, and the

client sends a RESPONSE. The successful authentication is acknowledged with a SUCCESS
message. Afterward, an IQ(set) BIND stanza is transmitted by the client to negotiate a unique
resource for the session, and the server confirms this binding with an IQ(result) BIND, thus
establishing a secure and identified XMPP session.

Continuing from the initial XMPP session setup, the packet trace captures presence broadcasts and
roster queries. After the STREAM and BIND processes are successfully completed, the client sends
a PRESENCE stanza, signaling its online status to the server and other users. Subsequently, an
IQ(get) stanza requesting the user's roster (jabber:iq:roster) is observed, to which the server
responds with an IQ(result) containing the requested roster information. This exchange is essential
for the client to retrieve its contact list. Finally, a similar sequence of authentication (AUTH,
CHALLENGE, RESPONSE, SUCCESS) and resource binding (BIND) is repeated, likely for
another user, as indicated by the presence stanza with a different full JID in the FROM field,
suggesting the establishment of a separate, concurrent XMPP session for a second user on the same
local network.

The follow-up in the XMPP packet trace shows further interaction post-authentication. Multiple
PRESENCE stanzas indicate the user is announcing their availability to the network. Additionally,
there are direct MESSAGE stanzas being exchanged between users, indicative of actual chat
communication taking place. This part of the session demonstrates the users actively engaging in
sending and receiving messages, which is the core function of XMPP.

Subsequently, the STREAM END stanzas suggest the closing of XMPP streams, signaling that the
users or the server are terminating their sessions. In between these messages, IQ(get) queries for the
jabber:iq:version are noted, which are requests for information about the XMPP client version being
used; the server responds with IQ(result) providing the requested information. This exchange is

typically used for compatibility and diagnostic purposes. Overall, this segment of the trace captures
the active usage phase of an XMPP session, including messaging and session termination.

