
Victor MAYAUD

APPIOT : Lab 1
CoAP

1/ Discovering Server Resources :

In clientGet.py I changed the Uri by this ‘coap://10.0.2.16/.well-known/core’ and I obtained all the
available resources in the server:

client:

server:

2/ Analysing Traffic with Wireshark.

After capturing the traffic I obtained this:

In the info section we can see CON, so the messages are confirmable.

For the other resources we have this:

/time:

For this request, we have a new token designated as 'c3.' Additionally, the message ID and the
length of the response have changed. The token remains consistent for each identical request, but it
alters when the request changes. The message ID is updated with each new request, and the
response length varies depending on the request specifics.

Here is another example with the request other/separate:

For this case we have this steps:

Packet #5: This is a confirmable CoAP GET request sent by the client. It requires an
acknowledgment from the server to confirm that the request has been received.

Packet #6: The server sends an acknowledgment (ACK) back to the client. However, this ACK is an
empty message, which means it's acknowledging receipt of the request without carrying the actual
response data yet.

Packet #7: Subsequently, the server sends the response with the requested content in a separate
confirmable message. This pattern is used when the server needs more time to prepare the response
or wishes to separate the acknowledgment of the request from the response.

Packet #8: Finally, the client acknowledges the receipt of the response content with another ACK.

for other/block:

the token changed, the same for the length, the mid and the uri.

For the other resources it is the same the token, mid, uri and the number of packets changed.

3/ GET Requests with and without Confirmation.

Result of the command aiocoap-client coap://10.0.2.16/time :

The message is confirmable. The client send a request and the server send back the data with the
ack.

aiocoap-client --non coap://10.0.2.16/time

The main difference between the two captures is the message type. The first capture shows a
confirmable (CON) request that requires an acknowledgment (ACK) from the server, evidenced by
the two-packet exchange. The second capture illustrates a non-confirmable (NON) request which
doesn't require an ACK, resulting in just two messages: the request and the response.

4/ Message format analysis.

For the request /time we have:

Frame: Details about the data captured by Wireshark, including the length and bytes on the wire.

Ethernet II: Shows the source and destination MAC addresses, indicating the hardware-level
communication.

Internet Protocol Version 4 (IPv4): Includes source and destination IP addresses, differentiating
services field, identification, flags, fragment offset, time to live (TTL), and protocol (indicating
CoAP).

User Datagram Protocol (UDP): Displays the source and destination ports, important for
identifying the CoAP messages.

Constrained Application Protocol (CoAP): Displays the protocol-specific information such as the
message type (Acknowledgment), the message ID (MID), the request method (GET), the response
code (2.05 Content), and the Token (TKN), which is used to match responses with requests.

5/ IPv6 configuration.

With the request “aiocoap-client coap://[2001:db8::1]/time” we have:

The source and destination addresses changed according to the IPv6 and the length is bigger than
the request with IPv4.

6/ Large block transfer.

For the request other/block/ with payload equals to 1024 I have this:

For the request other/block/ with payload equals to 2048 I have this:

For the request other/block/ with payload equals to 4096 I have this:

With increasing payload sizes, CoAP uses blockwise transfer to efficiently manage data
transmission. For the 1024-byte payload, we see a simple two-message exchange, showing that it
fits within a single CoAP message without the need for segmentation. However, with the 2048 and
4096-byte payloads, multiple CoAP messages are involved, indicating that the payload is divided
into blocks. This is evident from the "Block" option in the CoAP header, which signifies that the
message is part of a sequence of block transfers. The transfer of larger payloads results in more
CoAP messages, as the payload must be split into sizes that conform to the network's MTU limits.

7/ PUT Request and Blockwise Handling.

We the script clientPUT.py (payload=1024) I have got this:

Only 6 packets is travelling.

For different payload we have:

-2048:

-4096:

The Wireshark captures showed that as the payload size increases, CoAP automatically employs
blockwise transfer to handle the data. This is necessary because CoAP messages must stay within
the size limits of the underlying transport, which for UDP is typically 1280 bytes for the path MTU
(Maximum transmission unit). The larger payloads were segmented into blocks, each transferred in
separate CoAP messages, as observed in the increasing number of packets captured for the larger
sizes. This mechanism ensures reliable and efficient data transmission for constrained environments
where large messages could lead to network congestion or loss.

8/ CoAP Observer Functionality.

In putting my ip address and I put the uri /time in the script client-observer.py, then I obtained this:

The script initially set up an observation relationship with a CoAP server resource. As expected, it
received and printed the first notification of the current state of the resource. Subsequently, it
printed updates whenever the observed resource changed.

I modified it to cease observation after receiving ten values. To achieve this, I added a counter
variable that increments with each received notification. When the counter reached ten, the script
executed the observation.cancel() method to stop receiving updates.

I replaced this line of code:

async for r in pr.observation :

print(« Next result :%s\n%r » % (r,r.payload))

by this :

I implemented a counter called c and I stopped after 10 iterations.

Finally I obtain the good result which is :

Upon successfully receiving a sequence of ten values, the system is programmed to terminate the
observation, thereby stopping any further updates.

Second Part:

For doing the second part I modified the code server.py. I used the class TimeRessource for doing
the new class call TempResource :

Just the function render_get changed. In the render_get function, a simulated delay of five seconds
is introduced using asyncio.sleep(5) to emulate a time-consuming read operation, such as accessing
a sensor or a database. A random temperature value between 20 and 30 is generated using
random.randint(20, 30). This value is then formatted into a JSON string with json.dumps({"temp":
temp_value}). Finally, this JSON string is encoded in 'utf-8' and sent back as the payload of the
CoAP message with the content format set to application/json, making the response machine-
readable and compliant with common data interchange standards. Finally I obtained this :

When using wireshark I obtained this :

we see a CoAP GET request and response sequence. The exchange begins with a CON message
indicating a GET request from the client. The server promptly acknowledges this request with an
empty ACK message, indicating that it has received the request but the content is not yet ready.
After a deliberate delay - often used to emulate data processing or retrieval from a sensor - the
server responds with the content in a CON message. Finally, the client sends an ACK to confirm the
receipt of the content, completing the transaction.

