
Victor MAYAUD

APPIOT
LAB 2 : MQTT

1/ Run the subscriber.py and publisher.py scripts and Analyze trafic with wireshark.

Screenshots:

Here are steps of what happened between the exchange:

1. Connect: A client connects to the broker.

2. Connect Ack: The broker acknowledges the connection.

3. Subscribe Request: A client subscribes to a topic.

4. Subscribe Ack: The broker acknowledges the subscription.

5. Connect: A client connects to the broker.

6. Connect Ack: The broker acknowledges the connection.

7. Publish Message: A client publishes a message on a topic to which it is subscribed.

8. Disconnect : Disconnection of the client.

In the scenario depicted, the MQTT client is both publishing to and subscribed to the same topic,
which is why we see two publish messages: one for the original publish action and another for the
message being received by the client. This round-trip of messages occurs because MQTT brokers
are designed to distribute messages to all subscribers of a topic, including the sender if it's
subscribed to that topic.

The QoS level for both are QoS 0, we can see that in the description of the packet:

Since the Clean Session flag is set to 1 in the connection packet, we can determine that the
connection is utilizing a 'clean session :

2/ Subscribing to topics and Receiving messages

I've created new topics named 'topic1' and 'topic2', and I've modified the code in 'publisher.py' to
introduce a delay between publishing messages. Since the client is subscribed to all these topics, it
receives published messages for each one, resulting in two 'Publish' packets for every topic.
Multiple 'Connect' packets are observed because the client establishes separate connections for each
topic.

We also add the new topics in subscriber.py:

3/ Quality of service.

Set the QoS to 1:

When the client publish something the broker answer with a publish ack.

Set the QoS to 2:

Here is the new steps in QoS2 :

1. Publish Message: The client publishes a message with QoS 2, which requires a four-step
handshake to ensure the message is received exactly once.

2. Publish Received (Pubrec): The broker acknowledges it has received the publish message
and will process it.

3. Publish Release (Pubrel): The client responds to the Pubrec, indicating that the broker can
release or forward the message to any subscribers.

4. Publish Complete (Pubcomp): The broker sends this message to confirm that the message
was released to the subscribers, completing the QoS 2 protocol exchange.

In QoS 0, messages are published without any acknowledgment from the receiver, essentially a
'fire-and-forget' approach. In QoS 1, each published message is followed by an acknowledgment
(PUBACK) from the receiver to confirm delivery at least once. Lastly, QoS 2 involves a four-step
communication process to ensure each message is received exactly once, providing the highest level
of reliability.

Higher QoS levels, increase message reliability, also introduce additional communication steps,
resulting in more time-consuming exchanges. QoS 0 is the quickest with a single-step message
delivery without any acknowledgment. QoS 1 adds an acknowledgment step, ensuring that
messages are delivered at least once. QoS 2, the most reliable, requires a four-step process to
guarantee that messages are delivered exactly once, significantly extending the communication time
for each message.

4/ Define topic levels and play with wildcards (Single-level and Multi-level).

In MQTT, single-level wildcards (+) and multi-level wildcards (#) allow for flexible topic
subscription.

For example, subscribing to test/+/temperature will match test/livingroom/temperature and
test/kitchen/temperature, but not test2/livingroom/humidity.

Subscribing to test/# will match any topics starting with test/, including
test/livingroom/temperature, test/kitchen/humidity, and even test/livingroom/light/intensity.

If we implement this in subscriber.py we have this:

We have the two new subscriptions with the use of wildcards.

We can test the subscriptions with this code on publisher.py:

In wireshark we obtain this:

Initially, we capture the packets related to connection establishment and topic subscriptions.
Following that, we focus on the message publishing phase. The client publishes messages to various
topics, and the broker dispatches these messages back to the client only for the topics to which it
has subscribed. The third message is not relayed back to the client, indicating that the client is not
subscribed to that particular topic.

5/Exploring message retention in MQTT:

In order to create message retention, I implemented this in the code publisher.py:

We publish in the topic “paho/sensor/temperature” with QoS=0 and the input True means that it’s a
retention message. Then on the code subscriber.py I add the subscription to the topic:

Then I recorded the packet with wireshark in taking care of launching the publisher before
launching the subscriber and I obtained this:

Initially, the client establishes a connection, publishes a message with the retention flag set, and
then disconnects. Starting from the fifth packet, we executed subscribe.py. The connection is
successfully made, and the client sends a request to subscribe to the correct topic. After the
subscription is confirmed, the broker immediately sends the retained message to the client. This
immediate delivery occurs because the message was published with the retain flag, meaning the
client does not need to wait for a new message to be published in order to receive the last state of
that topic. In the publish message packet we can see the flag retain set to 1:

So it’s a retention message.

6/Understanding the MQTT Keepalive Mechanism:

Keepalive timer value :

The value is equal to 60 by default.

When the keepalive time interval set by the MQTT client expires without any other communication
from the client, the client is expected to send a PINGREQ (Ping Request) to the broker. The broker,
upon receiving the PINGREQ, will reply with a PINGRESP (Ping Response). This exchange of
ping messages ensures both parties that the connection is still active. If the client fails to send a
PINGREQ or the broker doesn't respond with a PINGRESP, the client should assume the
connection has been lost and may attempt to reconnect.

If we change the keepalive value by 5 second the client is expected to send a PINGREQ every 5
seconds.

I have crafted two separate publisher scripts that perform different types of publication, each with
distinct keepalive intervals. To observe the impact of the keepalive setting, it is crucial to prevent
the publishers from disconnecting immediately after sending their messages. This approach allows
us to see how the keepalive mechanism maintains the connection when no further communication
occurs. Below is the code for one of the publishers (publisher_part6.py):

I captured this with wireshark:

the first publisher has a keep alive value equals to 6 and it was launch at 0s:

The second second publisher has a keep alive value equals to 12 and it was launch at 5s:

So at 6, 12, 18 and 24 seconds we have the Ping request from the first publisher and at 17s we have
the ping request of the second publisher.

7. Exploring MQTT’s last will and testament (LWT) :

In the publisher code I changed the code in order to put a last will and testament. I add this line of
code :

and in the subscriber code I subscribed to this topic:

Finally I obtained this in wireshark when I launched the subscriber first and then the publisher:

The initial four packets depict the activities of the subscriber followed by those of the publisher.
Between the 19th and 22nd-second marks, I halted the publisher, which led to the transmission of
the last will and testament message by the broker. This message is represented by the final 'Publish'
packet observed. The subscriber successfully received this message as intended.

8/ Effects of clean session flag and QoS on message delivery:

In order to make a persistent session I add this line of code in subscriber.py (subscriber_part8.py):

and I put QoS equals to 1.

Then I adapted the code of the publisher in order to publish in the same topic as the subscriber and I
adapted the QoS for the experience.

First scenario (QoS = 0):

In the first scenario with QoS set to 0, I initiated the subscriber's session and then launched the
publisher. Since QoS 0 offers 'at most once delivery,' the message published during this period does
not get queued for the subscriber if it is disconnected. As a result, when I stopped the subscriber at 5
seconds and subsequently initiated the publisher, the messages sent in the subscriber's absence were
not received upon reconnection. This demonstrates that with QoS 0, messages are not retained for
future delivery if the subscriber is not actively connected.

Second scenario (QoS = 1):

In this scenario, operating with QoS 1, upon reactivating the subscriber, it successfully received the
message that was published while it was disconnected. This confirms that the persistent session
feature is functioning correctly, as QoS 1 ensures message delivery at least once, retaining the
message until the subscriber is able to receive it.

Second Part:

subcriber.py:

This script sets up an MQTT client that subscribes to a specific topic and receives messages. It
starts by importing the necessary modules and defining the stop_client function, which disconnects
the client and stops the MQTT loop, effectively halting message reception. The on_message and
on_connect callback functions handle incoming messages and successful connections, printing
relevant information to the console. The MQTT client is configured with a specified keepalive
interval and is started with loop_start() to begin non-blocking network traffic handling. To ensure
the script runs for only 5 minutes, a threading timer is initiated, which schedules the stop_client
function to run after 300 seconds (5 minutes). Once this timer expires, the client will disconnect and
stop processing any further messages.

Publisher.py:

I incorporated an infinite loop, within which a new temperature value ranging from 10° to 30° is
published at 30-second intervals.

I obtained this on wireshark:

…

Both codes are operating correctly. The subscriber is initiated first, followed by the publisher. As a
result, we see a ping check originating from both the subscriber and the publisher at 30-second
intervals, accompanied by messages of published temperature readings. After 300seconds we can
see that the subscriber make a disconnect requete.

