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Abstract
This study focuses on classifying anomalous sounds in factory environments, particularly within slide rail machinery. Machinery
failures and breakdowns lead to substantial costs for companies. To mitigate these expenses, companies are investing in sensors and
artificial intelligence to enhance anomaly detection and reduce maintenance costs. One effective approach involves using autoen-
coders to analyze spectrograms of machine sounds. However, traditional autoencoders may have limited accuracy. We propose using
variational autoencoders (VAEs), which have demonstrated superior performance in identifying anomalous sounds.

Index Terms: Anomaly Detection, Unsupervised Learning, Audio Signal Processing, Machine Learning, Autoencoders, Variational
Autoencoders (VAEs), Feature Extraction, Reconstruction Error

1 Introduction
This report investigates the effectiveness of autoencoders (AEs)
and variational autoencoders (VAEs) in identifying anomalous
sounds within machine operating data. We focus on the DCASE
challenge, specifically targeting anomalies in slide rail machine
sounds. Our goal is to detect deviations from normal operation
without prior knowledge of specific anomaly types.

We begin by providing a foundational understanding of
anomaly detection, AEs, VAEs, and their applications in au-
dio anomaly detection. We also explore existing methods, dis-
cussing their strengths and limitations.

Next, we detail our proposed methodology, including the
dataset used, the architectures of the convolutional autoencoder
(CAE) and convolutional VAE (C-VAE) models, the training and
evaluation procedures, and the anomaly detection strategies
employed. The performance of the models is then presented
and compared using various metrics, including AUC, accuracy,
precision, recall, and F1-score, along with qualitative analysis of
reconstruction errors and latent representations.

Finally, we discuss the experimental results, analyzing the ef-
fectiveness of each model, comparing their performance, high-
lighting limitations, and suggesting potential avenues for future
research. The report concludes by summarizing key findings
and emphasizing the contributions and potential impact of our
proposed models on the field of audio anomaly detection.

2 Dataset Analysis

2.1 Description

The dataset used in this project is derived from the MIMII
dataset [1], focusing solely on slide rail machines. Each record-
ing is a 10-second, single-channel audio file capturing operating
sounds and ambient factory noise. The dataset includes normal
and anomalous operating conditions, with anomalous sounds
simulated by deliberately damaging the machines. All signals
are downsampled to 16 kHz for standardization and efficient
processing.

2.2 Dataset

The dataset is split into training and testing sets. The train-
ing set contains 2,370 normal sound records, while the test set

has 1,101 records (300 normal, 801 anomalous). The key chal-
lenge is to detect unknown anomalies when trained only on
normal sounds. This unsupervised learning scenario is realistic,
as real-world factory anomalies are rare and diverse, making it
impractical to collect examples of every possible anomaly. Both
datasets include sounds from three slide rails (IDs 00, 02, and
04).

Figure 1. Composition of the dataset

2.3 Sound Analysis
The sound data provided in this project is inWAV format, which
cannot be directly used to train a machine learning model. To
effectively analyze and utilize this data, we need to transform
the raw audio signals into a format suitable for modeling. One
of the initial steps in this process is to visualize the audio signals
to understand their characteristics better.

To begin with, we can plot the waveforms of both normal and
anomalous signals to observe their differences. By visualizing
these waveforms, we can gain insights into the nature of the
sound anomalies. For instance, Figure 2 demonstrates a com-
parison between a normal signal and an anomalous signal. In
this figure, the normal signal is represented in blue, while the
anomalous signal is depicted in red.

Upon examining the waveforms, it is evident that the anoma-
lous signal exhibits irregularities compared to the normal signal.
These irregularities can manifest as sudden spikes or variations
in amplitude, indicating the presence of anomalies in the ma-
chinery. Specifically, the malfunction in one of the slide rails
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results in an amplification of the signal at various points, which
can be clearly observed in the red waveform. These anomalies
might be caused by mechanical issues such as friction, misalign-
ment, or other forms of wear and tear that disrupt the normal
operation of the slide rail.

Figure 2. Representation of the wave forms

Furthermore, to enhance our analysis, we can convert these
waveforms into spectrograms. A spectrogram provides a visual
representation of the signal’s frequency spectrum over time, of-
fering a more detailed view of the sound characteristics. This
transformation helps in identifying specific frequency patterns
that may be associated with normal or anomalous conditions.
By analyzing the spectrograms, we can develop a more robust
feature set for training our anomaly detection model.

The figure 3 and the figure 4 show spectrograms of audio sig-
nals, illustrating the frequency content over time. In these spec-
trograms, the horizontal axis represents time, the vertical axis
represents frequency, and color intensity indicates the ampli-
tude of frequency components.

• Normal Signal Spectrogram: The first spectrogram
depicts a normal signal with consistent and regular
frequency patterns, indicated by the uniform distribution
of colors. This reflects stable and predictable operating
conditions typical of a well-functioning slide rail machine.

• Anomalous Signal Spectrogram: The second spectro-
gram shows an anomalous signal, characterized by irreg-
ular frequency patterns and disruptions in color intensity.
These irregularities suggest mechanical issues or malfunc-
tions in the slide rail machine.

Comparing these spectrograms highlights the differences be-
tween normal and anomalous conditions, demonstrating the
effectiveness of spectrograms in identifying sound anomalies.
These spectrograms suggest the use of autoencoders [2] to
leverage visual computation for classifying normal and anoma-
lous sounds in an unsupervised manner.

Figure 3. Spectrogram of an anomaly audio

Figure 4. Spectrogram of a normal audio

3 Proposed Approach

3.1 Dataset

The dataset consists of slide rail machine sounds from the
DCASE challenge. It includes a development dataset (with nor-
mal and anomalous sounds), an additional training dataset (only
normal sounds), and an evaluation dataset (unlabeled sounds)
[3].

3.2 Model Architectures

In the field of audio anomaly detection, two primary deep learn-
ing models are often employed: the Autoencoder (AE) and the
Convolutional Variational Autoencoder (C-VAE).

An autoencoder, as introduced by Hinton and Salakhutdinov
[4] is a neural network that learns to compress and then recon-
struct its input data. It has an encoder that reduces the input to
a smaller representation and a decoder that tries to rebuild the
original input from this reduced form. The difference between
the original and reconstructed data, known as the reconstruc-
tion error, is key. When dealing with audio, an AE is trained
on normal sounds. If it encounters a new sound and the recon-
struction error is high, this indicates the sound is different from
the learned normal sounds, potentially signaling an anomaly.

The C-VAE is similar to the AE but differs in that intead of
learning a single representation for each input, the C-VAE’s en-
coder learns a probability distribution [6]. This distribution is
usually defined by its mean and variance. The decoder then
samples from this distribution to create the reconstruction. The
C-VAE is particularly good at handling data with spatial struc-
ture, like audio spectrograms, because it uses convolutional lay-
ers in both the encoder and decoder. It can not only spot anoma-
lies but also create new audio samples. Anomalies are identified
by checking how likely an input signal is under the learned dis-
tribution. If a signal is unlikely, it’s considered anomalous.

• Implementation: Both the implementations of AE and
VAE utilize the libraries PyTorch. PyTorch is a comprehen-
sive Python library that facilitates the creation of complex
machine learning models and provides a user-friendly in-
terface for neural network construction and training. To
expedite the training phase, 100 epochs were set and the
VAE model uses a batch size of 512 while the AE model
uses 128. During model compilation, the Adam optimizer
was selected due to its efficiency in handling sparse gra-
dients and its adaptiveness in updating network weights.
The Mean Squared Error (MSE) was used as the recon-
struction loss function.

3.3 VAE Implementation for Anomalous Sound Detection

This section focuses on the VAE architecture utilized for anoma-
lous sound detection, detailing the design choices and their jus-
tifications.
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• Fully Connected Layers: The encoder consists of two
fully connected layers with batch normalization and ReLU
activation. These layers progressively reduce the dimen-
sionality of the input data and extract meaningful features.
The decoder mirrors this structure to reconstruct the input
data from the latent space representation.

• Batch Normalization: Normalizes the activations of the
previous layer at each batch, maintaining mean output
close to 0 and the output standard deviation close to 1.
This stabilizes the learning process and dramatically re-
duces the number of training epochs required to train deep
networks.

• ReLU Activation: Applied after each batch normaliza-
tion, introduces non-linearity into the model, enabling it
to learn complex patterns.

• Decoder: The decoder consists of two fully connected lay-
ers that expand the latent representation back to the origi-
nal input dimensions, with batch normalization and ReLU
activation applied after each layer.

Table 1
Detailed VAE Model Architecture for Anomalous Sound Detection

Layer (type) Output Shape Param #
input_layer (InputLayer) (None, 640) 0
Linear-1 [-1, 400] 256,400
BatchNorm1d-1 [-1, 400] 800
Linear-2 [-1, 400] 160,400
BatchNorm1d-2 [-1, 400] 800
Linear-3 [-1, 20] 8,020
Linear-4 [-1, 20] 8,020
Linear-5 [-1, 400] 8,400
BatchNorm1d-3 [-1, 400] 800
Linear-6 [-1, 400] 160,400
BatchNorm1d-4 [-1, 400] 800
Linear-7 [-1, 640] 256,640

3.3.1 Hyperparameters: The selection of hyperparameters
was a critical aspect of model tuning, aimed at optimizing both
the model’s performance and its computational efficiency. Each
hyperparameter setting was carefully chosen based on its im-
pact on the model’s ability to generalize and learn from the
training data effectively. Here we provide a detailed look at
these choices:

• Weight Decay: The weight decay parameter was set to
0.0, indicating that no regularization was applied to the
weights. This choice was made to avoid underfitting, as
the primary goal was to ensure themodel learns the under-
lying data distribution without penalizing large weights.

• Filter Sizes and Numbers: The convolutional layers uti-
lized varying filter sizes and numbers, strategically se-
lected to extract and learn rich feature representations at
various levels of abstraction. For instance, initial layers
used smaller filters to capture fine details and edges, while
deeper layers used larger numbers of filters to aggregate
these features into more complex patterns. This approach
helps in capturing sufficient contextual information with-
out losing detail by being either too broad or too narrow.

• Number of Layers: The VAE architecture includes sev-
eral fully connected layers and batch normalization lay-
ers. The model’s depth, characterized by multiple linear
and batch normalization layers, was designed to be deep
enough to capture complex features but balanced to avoid

excessive computational burden. This ensures that the
model can process higher-level features without becoming
overly complex, which could lead to overfitting.

• Trainable parameters: A total of 861,480 trainable pa-
rameters were included in the model. These parameters
are those that the model learns from the training data
and adjusts through backpropagation. The high number
of trainable parameters indicates the model’s capacity to
learn detailed and nuanced features from the data.

3.3.2 Optimization and Loss Function: Adam optimizer
was chosen for its adaptive learning rate capabilities [7], which
helps converge to the minimum more efficiently. The specific
parameters for the Adam optimizer were set to a learning rate
of 0.001 with beta values of 0.9 and 0.999, ensuring a good bal-
ance between the speed of convergence and the stability of the
training process.

The VAE uses a combination of reconstruction loss and KL
divergence as its loss function. The reconstruction loss is typi-
cally Mean Squared Error (MSE), which measures how well the
output matches the input. This loss function is particularly suit-
able for anomaly detection tasks, as it effectively quantifies the
difference between the reconstructed output and the original in-
put data. The KL divergence term regularizes the latent space
by ensuring that the learned distribution is close to the prior
distribution, promoting a well-structured latent space.

The reconstruction loss (MSE) measures how far off the re-
constructed output is from the original input, making it an ef-
fective metric for evaluating the model’s performance in recon-
structing normal data points. The KL divergence adds a regu-
larization term that penalizes the model if the learned distribu-
tion deviates significantly from the prior distribution, encourag-
ing the model to learn meaningful representations in the latent
space.

The combined optimization and loss strategy ensures that the
model not only learns to reconstruct the input data accurately
but also maintains a structured and meaningful latent space,
crucial for distinguishing normal data points from anomalies.

3.4 AE Implementation for Anomalous Sound Detection
This segment delves into the specifics of the Autoencoder (AE)
model tailored for detecting anomalies within audio signals. We
outline the architectural decisions and rationale behind them.

• Layer Composition: The AE’s encoder comprises three
densely connected layers, each followed by ReLU activa-
tion functions. This setup enables the model to gradu-
ally condense the input data into a compact representa-
tion. The decoder, mirroring the encoder’s structure, aims
to restore the original input from this compressed form.

• Activation Function: ReLU activation is employed post
each layer, injecting non-linear properties into the model,
thereby facilitating the learning of intricate patterns

• Decoder: The decoder is constructed from three densely
connected layers, with ReLU activation applied following
each layer, barring the final one, to revert the latent repre-
sentation back to the input’s original dimensions.

3.4.1 Hyperparameters: Choosing the right hyperparame-
ters was pivotal for fine-tuning the model, aiming to enhance its
performance and computational efficiency. Each hyperparame-
ter was meticulously selected to maximize the model’s general-
ization capability and effective learning from the training data.
Below, we elaborate on these selections:
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Table 2
Detailed AE Model Architecture for Anomalous Sound Detection

Layer (type) Output Shape Param #
input_layer (InputLayer) (None, 320) 0
dense (Dense) (None, 64) 20,544
dense_1 (Dense) (None, 64) 4,160
dense_2 (Dense) (None, 8) 520
dense_3 (Dense) (None, 64) 576
dense_4 (Dense) (None, 64) 4,160
dense_5 (Dense) (None, 320) 20,800

• Learning Rate: The learning rate for the Adam optimizer
was set to 0.001. This value determines the step size at
each iteration while moving toward a minimum of the loss
function. This value was chosen to balance the speed of
learning with the stability of the training process. A value
too high might lead to overshooting the minimum, while
a value too low might result in slow convergence.

• Batch Size: The batch size was set to 128. This parame-
ter dictates the number of samples that are processed be-
fore the model weights are updated. A batch size of 128
was chosen to strike a balance between computational ef-
ficiency and the quality of gradient estimates. A larger
batch sizes can be computationally faster but might lead to
less accurate gradient estimates, while smaller batch sizes
might provide better estimates but could slow down train-
ing.

• Number of Epochs: The model was trained for 100
epochs. An epoch signifies one complete pass through the
entire training dataset. The choice of 100 epochs wasmade
to allow the model sufficient iterations to learn the under-
lying patterns in the data. However, early stopping was
implemented to prevent overfitting, halting the training if
the validation loss did not improve for a certain number of
consecutive epochs.

• Trainable parameters: A total of 50,760 trainable param-
eters were included in the model.

3.5 Training and Evaluation

• Training: The models are trained on the normal au-
dio samples from the train directory in the development
dataset. The training objective is tominimize theMSE loss.

• Evaluation: Both the trained models are evaluated on the
test directory development dataset, comparing their per-
formance in identifying known anomalies. AE’s perfor-
mance is evaluated using precision, recall, accuracy, F1
score, and AUC. The VAE, however, also regularizes its la-
tent space to ensure the learned distribution aligns with a
prior distribution. So, evaluation focuses on distinguish-
ing normal from anomalous data, emphasizing AUC and
pAUC metrics for a comprehensive understanding of the
model’s performance.

4 Experimental Setup and Results

4.1 VAE

To evaluate the proposed model’s performance, several metrics
were utilized: precision, recall, Receiver Operating Characteris-
tic (ROC) curve/Area Under the Curve (AUC) [8].

For this report, we specifically present the AUC and partial
AUC (pAUC) metrics, as they provide a comprehensive evalu-
ation of the model’s capability to distinguish between normal
and anomalous data points.

As presented in Table 2, by the end of model training, the
proposed VAE network achieved the following AUC and pAUC
scores across different slider IDs

Table 3
Evaluation Metrics for the VAE Model Across Different Slider IDs

Slider ID AUC pAUC
00 0.950449 0.759462
02 0.783333 0.646757
04 0.932416 0.675931

Average 0.888733 0.694050

These results indicate a robust performance of the VAE
model, with an average AUC of 0.888733 and an average pAUC
of 0.694050 across the evaluated sliders. The high AUC scores
reflect the model’s strong ability to correctly classify normal
and anomalous data points, demonstrating its effectiveness in
anomaly detection tasks.

Figure 5. Original and Reconstruction of a normal sound

This visual comparison shows the model’s ability to repro-
duce the temporal and frequency characteristics of the original
sound, illustrating the VAE’s effectiveness in capturing and re-
constructing normal sounds. The similarities between the two
spectrograms demonstrate the model’s performance, while any
differences may point to areas for future improvement.

4.2 AE
The AE model’s performance (Figure 6) was evaluated using a
range of metrics, including precision, recall, accuracy, F1 score,
and the area under the receiver operating characteristic curve
(AUC). These metrics provide a comprehensive assessment of
the model’s ability to accurately distinguish between normal
and anomalous sounds.

The model was trained exclusively on normal audio samples
from the training set. Following training, the model’s efficacy
was rigorously tested on a separate test set comprising both
normal and anomalous samples. The reconstruction error [9],
a measure of the discrepancy between the original and recon-
structed audio, was computed for each sample as seen in Figure
7. A threshold was then established to categorize samples as ei-
ther normal or anomalous based on their reconstruction error,
seen in Figure 8.

Table 4
Basic Autoencoder Metrics

Metric Value
Precision 52.7%
Recall 62.0%
Accuracy 78.3%
F1 Score 56.9%
AUC 0.7662

The AE model’s performance, while achieving a decent AUC
of 0.7662, reveals limitations in other evaluation metrics, par-
ticularly its precision (52.7%) and recall (62.0%), indicating a
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tendency to both misclassify normal sounds and miss actual
anomalies.

Figure 6. Training and Validation Loss Over Epochs for AE

Figure 7. Reconstruction Error Distribution for Normal/Abnormal Sig-
nals on Test Set

Figure 8. Threshold Range separation of Normal/Abnormal Signals

5 Discussion
For this project, both the autoencoder (AE) and the variational
autoencoder (VAE) achieved an AUC greater than 0.5, indicating
that both models can effectively classify the sounds. However,
the VAE demonstrated superior performance, with an average
AUC of 0.89, compared to the classical autoencoder’s AUC of
0.7662. Although the implementation of a VAE is more com-
plex than that of a traditional autoencoder and requires more re-
sources for training, the VAE contains 861,000 parameters, while
the classical autoencoder has only 50,760 parameters. This in-
creased complexity translates into better performance for clas-
sifying anomalous sounds.

5.1 Effectiveness of the Models
The high AUC scores for both the CAE and the C-VAE mod-
els reflect their effectiveness in detecting anomalies in audio
signals. The CAE’s AUC of 0.7662 suggests it is quite capable
of distinguishing normal from anomalous sounds, while the C-
VAE’s higher AUC of 0.89 indicates an even stronger ability to
correctly classify these sounds.

5.2 Comparison of the Models
Between the two models, the C-VAE performs better in detect-
ing anomalies. This superior performance can be attributed to

Table 5
AUC metrics compares between AE and VAE

VAE AE
AUC 0.888733 0.7662

the VAE’s ability to model the underlying data distributionmore
effectively through its probabilistic approach, allowing it to gen-
eralize better to unseen data. Additionally, the VAE’s complex
architecture, with a significantly higher number of parameters,
provides it with more capacity to capture intricate patterns in
the data.

5.3 Limitations of the Approach
Despite their effectiveness, using AEs and VAEs for anomaly de-
tection in audio signals has some limitations. The primary lim-
itation is their requirement for a large amount of normal data
for training, as the models learn to reconstruct normal patterns.
Any imbalance or lack of diversity in the training data can af-
fect the model’s performance. Additionally, the complexity of
VAEs necessitates more computational resources, which can be
a constraint in real-world applications.

5.4 Future work
To improve the performance of anomaly detection models, fu-
ture research could explore several directions. One approach is
to incorporate more advanced architectures, such as recurrent
neural networks (RNNs), which can better capture temporal de-
pendencies in audio signals. Another direction is to use transfer
learning from pre-trained models on similar tasks, which could
enhance performance with less training data.

6 Conclusion
In this study, we tackled the challenge of detecting anomalous
sounds in factory environments thanks to the implementation
and comparison of two models: Autoencoders (AEs) and Varia-
tional Autoencoders (VAEs).

We began by analyzing the MIMII dataset: audio recordings
of slide rail machinery under both normal and anomalous condi-
tions. The dataset was carefully preprocessed to ensure unifor-
mity and effectiveness in model training, including transform-
ing audio signals into spectrograms for enhanced feature extrac-
tion.

Then we built a convolutional architectures for both AEs and
VAEs. The AE model was designed to learn the normal patterns
of the audio signals and flag significant deviations, while the
VAE model aimed to create a probabilistic representation of the
data, offering a more robust mechanism for anomaly detection.
Both models were implemented using PyTorch and trained ex-
tensively to optimize their performance.

We measured the models’ effectiveness using metrics such
as AUC, accuracy, precision, recall, and F1-score. Our results
indicated that while both models performed well in detecting
anomalies, the VAE demonstrated superior accuracy and robust-
ness, thanks to its probabilistic nature and advanced architec-
ture.

In conclusion, our research demonstrates the potential of
VAEs in enhancing the accuracy of anomaly detection in indus-
trial audio signals.
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