
Aerial Cactus Identification

AML Challenge 1
Group n° 50

Victor MAYAUD1, Elliot BOUCHY1

1 Data Science, EURECOM, France

Abstract
This study explores deep learning approaches for columnar cactus identification from aerial imagery. We introduce a custom CNN
architecture that employs a stacked convolutional block design. Each block consists of a Conv2D layer for feature extraction, followed
byMaxPooling2D for spatial downsampling, BatchNormalization for regularization, and Dropout to prevent overfitting. Experiments
are conducted on a dataset of 21,500 images from the VIGIA project [1]. The custom CNN achieves a high accuracy of 99% and an
ROC/AUC score of 1.0. Our findings demonstrate the effectiveness of deep learning techniques in accurately identifying columnar
cacti, contributing to conservation efforts and ecological research [2]. The proposed approach showcases the potential of AI in
biodiversity preservation.

Index Terms: Deep Learning, Cactus, Convolutional Neural Networks (CNN), Transfer Learning, ROC/AUC score

1 Introduction
Quantifying the impact of human activities on Earth’s flora and
fauna is anything but easy. Indeed, in Mexico for instance, log-
ging, mining, and agriculture are activities that can negatively
impact biodiversity without being well noticed.

Some monitoring is available to determine whether or not
there are cacti present, for example, but the aerial images may
not always be clear, which complicates the task. However, what
a human cannot do for classification may be accomplished with
machine learning.

In this work, we will use and discuss some machine learning
techniques to accurately determine whether or not the flora in
the picture is a Neobuxbaumia tetetzo cactus.

The report is structured as follows: Section 2 briefly describes
the dataset used in our study. Section 3 presents and explains
the data preprocessing techniques we applied, while Section 4 il-
lustrates the machine learning model selection process and how
we made our choice. Section 5 focuses on model evaluation and
how we validated our selection. Finally, Section 6 concludes the
report, summarizing our main findings.

2 Dataset
The "Aerial Cactus Identification" dataset was created as part of
competitions and academic projects aimed at developing com-
puter vision algorithms for the recognition of cactus in aerial
images [3][4]. The images were captured by a drone or other
aerial devices, making them ideal for pattern recognition in nat-
ural and extensive environments.

2.1 Composition of the Dataset

The dataset consists mainly of two elements:
Aerial images: These images are taken from a high vantage

point, which allows to capture large areas of terrain.
Class labels: Each image is associated with a label that indi-

cates whether or not a cactus is present in the image.
The typical data distribution in this dataset is typically about

74.9% of images with cacti and 25.1% of images without cactus.

3 Data Preprocessing
The data mining phase of the "Aerial Cactus Identification"
dataset is of crucial importance for understanding the composi-

tion and distribution of the data. Initially, by examining the dis-
tribution of classes, we can see that the dataset is unbalanced,
with 13,136 images containing cactus and 4364 not containing
cactus. This distribution is visualized using a pie chart where
cactus images represent the majority.

As for the characteristics of the images, they are usually pre-
treated before being used for model training. Images are resized
to a standard size of 32x32 pixels and normalized for pixel values
between 0 and 1.

3.1 Balancing
In order to correct the imbalance between the classes of the
dataset "Aerial Cactus Identification", oversamplingmethods are
implemented to increase the number of images of the minority
class, that is to say those without cactus. These data augmen-
tation techniques aim to balance class distribution and improve
the ability of models to generalize on cactus-free images [5].

More specifically, these techniques include rotating images,
adding noise, changing brightness, and randomly zooming. Ro-
tation consists of rotating the images at predefined angles (90,
180 or 270 degrees), which adds variability to the training data.
The addition of noise introduces random variations in image
pixel values, simulating more diverse acquisition conditions.
Changing the brightnessmakes it possible to create variations in
lighting, making the models more robust to variations in bright-
ness in real images. Finally, the random zoom performs random
enlargements or reductions on the images, which allows captur-
ing details at different scales.

By combining these methods, we obtain a more balanced
and diversified training dataset, which allows models to better
generalize on test data and improve their classification perfor-
mance. This approach helps to reduce the risk of over-accurate
models and to ensure a better ability to detect cacti in aerial im-
ages [6].

4 Methodology
After properly processing the dataset, the next critical step in
our study is the development of a model capable of accurately
detecting cactus within images. One of the most effective meth-
ods for image classification tasks is the Convolutional Neural
Network (CNN). Renowned for their efficiency in handling im-
age data, CNNs leverage powerful libraries that simplify imple-



AML: Algorithmic Machine Learning, Challenge 1

mentation. By optimizing the architecture and carefully tun-
ing the network’s parameters, we can significantly enhance the
model’s accuracy and efficiency in classifying images. This
chapter will delve into the detailed implementation of our CNN,
followed by an in-depth exploration of the model’s architecture
and the rationale behind our specific design choices.

4.1 CNN Implementation

The implementation of the Convolutional Neural Network
(CNN) utilizes the libraries TensorFlow and Keras. TensorFlow,
a comprehensive Python library, facilitates the creation of com-
plex machine learning models, while Keras, an open-source li-
brary, provides a user-friendly Python interface for artificial
neural networks. To enhance the efficiency of the training pro-
cess, we employed a GPU provided by Kaggle, which signifi-
cantly accelerates computation.

Prior to training, the dataset was processed to ensure it was
both balanced and normalized, optimizing the conditions for ef-
fective model training. The data was divided into two subsets:
90% allocated to the training dataset and the remaining 10% to
the validation dataset. The training dataset undergoes rigorous
training processes, while the validation dataset serves to evalu-
ate the model’s performance on unseen data.

To expedite the training phase, we set the batch size to 16
and planned for 50 epochs of training. During model compila-
tion, we selected the Adam optimizer and binary cross-entropy
as the loss function. The choice of Adam as an optimizer is due
to its efficiency in handling sparse gradients and its adaptive-
ness in updating network weights, which is crucial for converg-
ing faster to the optimal weights. Binary cross-entropy is ideal
for binary classification tasks, such as distinguishing between
the presence and absence of cacti, as it measures the distance
between the probability distribution of the output and the true
distribution, providing a robust metric for model accuracy.

4.2 CNN model

This section focuses on the CNN architecture utilized for cactus
detection, detailing the design choices and their justifications.

4.2.1 Detailed Architecture The model comprises multiple
convolutional blocks, each designed to perform feature extrac-
tion at different levels of abstraction. Each block includes a con-
volutional layer followed by max pooling, batch normalization,
and dropout, structured as follows:

• Convolutional Layers: Utilize filters of varying sizes to
capture spatial hierarchies of features within the image.
For instance, the initial layers use smaller filters to cap-
ture fine details, while deeper layers use larger filters to
aggregate these details into higher-level features.

• Max Pooling: Reduces spatial dimensions, thus decreas-
ing computational complexity and overfitting by summar-
ily extracting dominant features that are robust against
variations in the image.

• Batch Normalization: Normalizes the activations of the
previous layer at each batch, maintaining mean output
close to 0 and the output standard deviation close to 1.
This stabilizes the learning process and dramatically re-
duces the number of training epochs required to train deep
networks.

• Dropout: A regularization technique where randomly se-
lected neurons are ignored during training, reducing the
risk of overfitting. Our model employs a dropout rate of

20%, balancing between network complexity and training
stability.

The architecture is terminated by a flatten layer transition-
ing to a dense layer which outputs the classification results. A
sigmoid activation function in the dense layer makes it suitable
for binary classification, indicating the presence or absence of a
cactus.

Table 1
Detailed CNN Model Architecture for Cactus Detection

Layer (type) Output Shape Param #
input_layer (InputLayer) (None, 32, 32, 3) 0
batch_normalization (None, 32, 32, 3) 12

conv2d (None, 32, 32, 48) 3,648
max_pooling2d (None, 16, 16, 48) 0

batch_normalization_1 (None, 16, 16, 48) 192
dropout (None, 16, 16, 48) 0
conv2d_1 (None, 16, 16, 64) 76,864

max_pooling2d_1 (None, 8, 8, 64) 0
batch_normalization_2 (None, 8, 8, 64) 256

dropout_1 (None, 8, 8, 64) 0
conv2d_2 (None, 8, 8, 128) 204,928

max_pooling2d_2 (None, 4, 4, 128) 0
batch_normalization_3 (None, 4, 4, 128) 512

dropout_2 (None, 4, 4, 128) 0
conv2d_3 (None, 4, 4, 160) 512,160

max_pooling2d_3 (None, 2, 2, 160) 0
batch_normalization_4 (None, 2, 2, 160) 640

dropout_3 (None, 2, 2, 160) 0
conv2d_4 (None, 2, 2, 192) 768,192

max_pooling2d_4 (None, 1, 1, 192) 0
batch_normalization_5 (None, 1, 1, 192) 768

dropout_4 (None, 1, 1, 192) 0
flatten (None, 192) 0

dense (sigmoïd) (None, 1) 193

4.2.2 Architecture Choices The architecture was selected
based on its success in similar image classification tasks as docu-
mented in recent literature. Modifications to standard architec-
tures (e.g., adjusting filter sizes and the number of layers) were
made to tailor the model to the specific challenges posed by our
dataset, which includes a variety of cactus shapes and sizes un-
der different lighting conditions.

4.2.3 Hyperparameters The selection of hyperparameters
was a critical aspect of model tuning, aimed at optimizing both
the model’s performance and its computational efficiency. Each
hyperparameter setting was carefully chosen based on its im-
pact on the model’s ability to generalize and learn from the
training data effectively. Here we provide a detailed look at
these choices:

• Filter sizes and numbers: The convolutional layers uti-
lized varying filter sizes and numbers, strategically se-
lected to extract and learn rich feature representations at
various levels of abstraction. For instance, initial layers
used smaller filters to capture fine details and edges, while
deeper layers used larger numbers of filters to aggregate
these features into more complex patterns. This approach
helps in capturing sufficient contextual information with-
out losing detail by being either too broad or too narrow.

• Number of layers: The architecture comprises several
layers of convolution, pooling, and fully connected lay-
ers. The depth of the model, characterized by multiple

2



AML: Algorithmic Machine Learning, Challenge 1

convolutional and pooling layers, was designed to be deep
enough to capture complex features but balanced to avoid
excessive computational burden. This ensures that the
model can process higher-level features without becoming
overly complex, which could lead to overfitting.

• Trainable parameters: A total of 1,567,175 trainable pa-
rameters were included in the model. These parameters
are those that the model learns from the training data
and adjusts through backpropagation. The high number
of trainable parameters indicates the model’s capacity to
learn detailed and nuanced features from the data.

These hyperparameters are critical for shaping the model’s
learning structure and dynamics, directly influencing how well
the model can learn and generalize from the training dataset to
unseen data.

4.2.4 Optimization and Loss Function Adam optimizer
was chosen for its adaptive learning rate capabilities, which
helps converge to the minimum more efficiently. Binary cross-
entropy loss function was used due to its efficacy in binary clas-
sification problems, measuring how far off the predictions are
from the actual classifications.

This model’s configuration has proven effective, as evidenced
by our validation results, which demonstrate the model’s ability
to generalize well to unseen data.

5 Experiments
In this section, we detail the implementation of the proposed
network and describe the used dataset. Then, we discuss the ob-
tained results and examine the proposed model’s performance.

5.1 Implementation Details
In this study, the experiments are carried out using a Kag-
gle notebook with the following configuration properties: an
NVIDIA Tesla P100 GPU with 16GB memory; Intel Xeon CPU
@ 2.30GHz with 4 cores; and 29GB RAM. The notebook is pro-
grammed using Python 3 and utilizes the TensorFlow and Keras
libraries for building and training the convolutional neural net-
work (CNN) model.

5.2 Balancing
After performing oversampling, we achieved an equal distribu-
tion of images containing cacti and images without cacti in the
training set, as illustrated in Figure 1.

Figure 1. Distribution of train set before and after balancing

5.3 Results
To evaluate the proposedmodel’s performance, precision, recall,
Receiver Operating Characteristic (ROC) curve/Area Under the
Curve (AUC), and loss metrics were utilized. The overall perfor-
mance was assessed using a validation set comprising 1,750 im-
ages. As presented in Table 2, by the end of model training, the

proposed network achieved an ROC/AUC score of 1.0 for both
the training and validation data sets. Additionally, the model
exhibited a loss of 1% on the training data and 0.6% on the vali-
dation data.

Table 2
Summarised Training History for 50 epochs

Epoch Loss Val Loss ROC/AUC Val ROC/AUC

0 0.184 0.112 0.979 0.993
10 0.044 0.027 0.998 1.000
20 0.030 0.056 0.999 1.000
30 0.021 0.017 0.999 0.999
40 0.018 0.005 1.000 1.000
50 0.017 0.006 0.999 1.000

To provide a detailed analysis of the model’s performance
during the training period, Figure 2 illustrates the Receiver
Operating Characteristic (ROC) curve/Area Under the Curve
(AUC) score.

Figure 2. ROC/AUC Curve for Training and Validation Sets

For further evaluation of the model performance, Figure 3
illustrates the Binary Cross-Entropy Loss score.

To checkwhether themode generalizedwell, 10% of the train-
ing was split randomly and results of confusion matrix for the
model are shown in Figure 4.

From the confusion matrix, the model performs very well in
correctly identifying Cactus instances, with only 3 false nega-
tives out of 1338 total Cactus instances (1335 true positives +
3 false negatives).The model also performs reasonably well in
correctly identifying Not Cactus instances, with 410 true nega-
tives out of 412 total Not Cactus instances (410 true negatives +
2 false positives). The model has a low false positive rate for the
Cactus class, with only 2 instances incorrectly classified as Cac-
tus when they were actually Not Cactus. We can then calculate
and report that the model has an accuracy of 99.7%. Finally, in
Figure 5 we ensure the model’s accuracy by visually inspecting
its predictions. Specifically, we continued sampling images until
the model identified 3 images with cacti and 3 images without
cacti. We then verify that the model’s predictions aligned with

3



AML: Algorithmic Machine Learning, Challenge 1

Figure 3. Binary Cross-Entropy Loss for Training and Validation Sets

Figure 4. Confusion matrix for the validation set

Figure 5. Model predictions for Cactus and Non Cactus

the actual content of the images, demonstrating its effectiveness
in the cactus recognition task.

5.4 Prediction on Test Data
The trained model is now ready to make predictions on the pro-
vided test dataset consisting of 4000 images. For each input im-
age, the model outputs a probability between 0 and 1, indicating
the likelihood that the image contains a cactus. These prob-
ability predictions are then binarized, converting probabilities
greater than 0.5 to a label of 1 (cactus present), and probabilities
less than or equal to 0.5 to a label of 0 (cactus absent). Finally,
the image filename and predicted label for each test image are
stored together in a Pandas DataFrame, which is then exported
to a CSV file.

Table 3
Snippet of exported CSV file

id has_cactus

28f1df01c205dede3924ad332bc8849c.jpg 1
f3d2f8f72847b33bea5a1e7c3846e90f.jpg 0
8dd41e4e62b3709ce3c8a7a0677048bb.jpg 1
d671866be0c224d932893b11fd367afe.jpg 1
249e8e0f5a3f95557fb6d48389ccb1ee.jpg 1
562706436fdf4d515436bc6e2dc7c092.jpg 1
f6b759fbfd3d2f9db952cd6ebb8fa8a4.jpg 1
8a21b91ba249035b7bdbedb3e1d9dd98.jpg 0
6f4f047921bd6608ffef1fa980503e1f.jpg 1
6210d406324bc42df79f27811a83a12d.jpg 0
bd9c5755cd824b30197db769f1252137.jpg 1
903239dcbd060aa7227160983b506725.jpg 0
9e824b630576b21a282b38058cd82228.jpg 1
d14e5ff7b37d5ea2ea822b088f0d938b.jpg 1
1738d7bc49457c66a14f958f50002f68.jpg 1

6 Conclusion
In this study, we explored the application of a convolutional
neural network (CNN) for a cactus classification problem.

The data underwent several preprocessing steps, including
preprocessing and balancing, which were crucial for enhanc-
ing the model’s efficiency. The model’s efficiency was validated
through various performance metrics.

Ultimately, we developed an accurate machine learning
model with 99% accuracy for identifying the Neobuxbaumia
tetetzo cactus species.

Acknowledgements
This research received support during the AML course, in-
structed by Professor Pietro MICHIARDI, Head of the Data Sci-
ence Department at EURECOM, France.

References
[1] VIGIA: Autonomous Surveillance of Biosphere Reserves. ht

tps://jivg.org/research-projects/vigia/. 2016.
[2] Efren López-Jiménez, Juan Irving Vasquez-Gomez, Miguel

Angel Sanchez-Acevedo, Juan Carlos Herrera-Lozada, Abril
Valeria Uriarte-Arcia, Columnar cactus recognition in aerial
images using a deep learning approach https://doi.org/
10.1016/j.ecoinf.2019.05.005. 2019.

[3] Pietro Michiardi. EURECOM AML 2024:: Challenge 1 –
Aerial Cactus Identification. https://www.kaggle.com
/datasets/michiard/aerial-cactus. 2024.

4

https://jivg.org/research-projects/vigia/
https://jivg.org/research-projects/vigia/
https://doi.org/10.1016/j.ecoinf.2019.05.005
https://doi.org/10.1016/j.ecoinf.2019.05.005
https://www.kaggle.com/datasets/michiard/aerial-cactus
https://www.kaggle.com/datasets/michiard/aerial-cactus


AML: Algorithmic Machine Learning, Challenge 1

[4] Kaggle. Playground Code Competition - Aerial Cactus Iden-
tification. https://www.kaggle.com/competitions/ae
rial-cactus-identification. 2019.

[5] What Is Balanced And Imbalanced Dataset? https://medi
um.com/analytics-vidhya/what-is-balance-and-imb
alance-dataset-89e8d7f46bc5

[6] Introduction to Balanced and Imbalanced Datasets in Ma-
chine Learning. https://encord.com/blog/an-introdu
ction-to-balanced-and-imbalanced-datasets-in-m
achine-learning/

5

https://www.kaggle.com/competitions/aerial-cactus-identification
https://www.kaggle.com/competitions/aerial-cactus-identification
https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5
https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5
https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5
https://encord.com/blog/an-introduction-to-balanced-and-imbalanced-datasets-in-machine-learning/
https://encord.com/blog/an-introduction-to-balanced-and-imbalanced-datasets-in-machine-learning/
https://encord.com/blog/an-introduction-to-balanced-and-imbalanced-datasets-in-machine-learning/

	Introduction
	Dataset
	Composition of the Dataset

	Data Preprocessing
	Balancing

	Methodology
	CNN Implementation
	CNN model
	Detailed Architecture
	Architecture Choices
	Hyperparameters
	Optimization and Loss Function


	Experiments
	Implementation Details
	Balancing
	Results
	Prediction on Test Data

	Conclusion

